训练14分钟,超越Alpaca!华人团队发布「飞天羊驼」,基于LLM的数据过滤新范式
近期,指令微调(IFT)已经被作为预训练大语言模型(LLMs)获得指令遵
近期,指令微调(IFT)已经被作为预训练大语言模型(LLMs)获得指令遵循能力的关键训练阶段。
然而,广泛使用的IFT数据集(例如,Alpaca的52k数据)却包含许多质量低下的实例,这些实例带有错误或无关的回应,对IFT产生了误导和不利影响。
先前的处理方法主要依靠人工筛选这些低质量数据,但这既费时费力,又难以扩展。
(资料图片仅供参考)
因此,如何以高效、自动化的方式过滤出这些低质量数据,成为提升LLM微调效果的关键所在。
现在,来自马里兰大学,三星和南加大的研究人员提出了一种有效的数据过滤策略,使用强大的LLM(例如,ChatGPT)自动识别和移除低质量数据,以改善指令微调(IFT)的效果。
图片
论文地址:https://arxiv.org/abs/2307.08701
项目地址:https://lichang-chen.github.io/AlpaGasus/
在这项工作中,研究者提出的模型AlpaGasus,使用从52k Alpaca数据中过滤出来的9k高质量数据进行微调。
AlpaGasus在多个测试集上显著优于原始的Alpaca,其13B版本甚至在测试任务上的表现超过了90%的教师模型(即,Text-Davinci-003)。
并且,AlpaGasus在训练时间上也实现了5.7倍的提升,将7B版本的训练时间从80分钟缩短到了14分钟。
更少数据,训练更强「羊驼」具体来说,研究者利用强大的LLM(如ChatGPT)自动评估每个(指令,输入,回应)元组的质量,对输入的各个维度如Accurac、Helpfulness进行打分,并过滤掉分数低于阈值的数据。
打分的prompt如下:
图片
方法的pipeline如下:
实验部分在实验部分,作者使用了一组全面且多样化的测试集对他们提出的语言模型AlpaGasus进行了评估。
这个全面的评估集包含了来自Self-instruct、Vicuna、WizardLM和Koala的测试集。每一个测试集都提供了不同的指令,减少了评估偏差,提供了对AlpaGasus性能的全面概述。
作者们将AlpaGasus与四种最近的LLMs进行了比较:Alpaca、Text-Davinci-003、ChatGPT和Claude。
性能评估
对于性能的评估,作者们采用了GPT-4作为裁判来评估和比较不同模型对一组指令的回复。
为了解决GPT-4裁判的位置偏差,作者们对两种顺序(即,将AlpaGasus的回复置于基线模型的回复之前/之后)都进行了尝试,最终得分基于两次得分的「胜-平-负」准则。
结果分析
在结果部分,作者强调——数据的质量比数量更重要。
这一点通过AlpaGasus-9k与AlpaGasus-52k在所有测试集上的优异表现得到了证明,尽管前者使用的训练数据明显少于后者。
作者还将AlpaGasus-9k和使用从Alpaca数据集中随机挑选出9k数据训练的模型进行了对比。
为了研究阈值对IFT的影响,作者比较了AlpaGasus和在应用较低阈值(4.0)选出的39k数据上微调的LLaMA。
结果显示,只用9k高质量数据训练的模型会显著好于用39k质量一般数据训练的模型。
消融实验部分,作者从选出训练AlpaGasus的9k数据中随机抽取3k和6k数据,并使用相同的训练脚本从LLaMA微调两个AlpaGasus的变体。
在所有四个测试集上,AlpaGasus在9k数据上的训练表现最好,这表明更多的高质量数据会导致更好的IFT模型。
细节评估
此外,作者还对AlpaGasus模型在WizardLM和Vicuna测试集的各项技能/类别进行了细致的评估。
首先,作者比较了AlpaGasus-7B(9k)和Alpaca-7B(52k)在WizardLM测试集上的表现。
结果显示,AlpaGasus在29项技能中的22项上表现得比Alpaca好或相同,但在剩余的7项技能,例如编程(如代码生成)方面,AlpaGasus并未表现出优势。
作者发现,这可能是由于在数据选择和过滤过程中,没有指定技能类别的比例,导致与编程相关的数据被过滤的比例(88.16%)比平均过滤比例(82.25%)高很多。因此,这导致编程技能比其他技能弱。
也就是说,在IFT中,保持训练数据在不同类别之间的多样性和平衡性非常重要。
接下来,作者进一步比较了AlpaGasus-13B(9k)和Alpaga-13B(52k)在WizardLM测试集上的表现。
其中,结果与7B模型的观察结果一致,AlpaGasus在大多数技能上仍然优于Alpaca。
这表明,即使模型大小增加,数据质量仍然优于数据量。
在对Vicuna测试集的分析中,AlpaGasus-7B在大多数类别上,包括反事实、角色扮演、知识和通用等方面,都优于Alpaca-7B。而且,当基模型规模扩大时,这一结论仍然成立。
然后,作者比较了AlpaGasus、text-Davinci-003、ChatGPT和Claude。结果显示,AlpaGasus-13B可以达到其教师模型text-Davinci-003 (text-Davinci-003被用来生成Alpaca-52k指令数据) 的90%的能力.
成本节约
在成本节约部分,作者比较了AlpaGasus和Alpaca的训练成本,考虑到在AWS上所需的计算费用。
对于7B模型,使用9k数据的AlpaGasus的训练成本为4.78美元,使用52k数据的Alpaca的训练成本为27.31美元。
对于13B模型,使用9k数据的AlpaGasus的训练成本为40.96美元,而使用52k数据的Alpaca的训练成本为225.28美元。
这显示出,作者的数据选择策略在模型规模扩大时,可以带来更显著的训练成本节约。
总结本文提出的数据过滤方法在可扩展性和自动化方面表现出显著的优势,证明了精心管理训练数据质量可以带来IFT性能的显著提升以及计算成本的大幅节省。
数据选择和评估策略也可以广泛应用于其他的指令微调数据集和LLMs,为大语言模型的实际部署开辟了新的研究方向。
关键词:
近期,指令微调(IFT)已经被作为预训练大语言模型(LLMs)获得指令遵
1新币兑换多少人民币,1新加坡币折算多少人民币(2023年7月28日)金投
内容正在升级改造,请稍后再试!【免责声明】本文仅代表合作供稿方观点
钛媒体App7月28日消息,日前,国家金融监督管理总局举行银行业保险业20
海口义务教育招生报名报名了民办学校,但是摇号没有摇上的,有以下解决
名记:独行侠计划聘请基德前助教埃里克-休斯,名记,雄鹿队,美国篮球,自
西藏林芝市波密县发生3 4级地震,震源深度10千米
大众与小鹏宣布合作这个事,我想大家都知道了也不需要多说。这两者能达
图片来源@妙鸭相机如果你的朋友圈,正在被“朋友们”的各种写真照刷屏
以下是哈投股份在北京时间7月28日11:15分盘口异动快照:7月28日,哈投
大众网潍坊报道 r为进一步推动预算绩效管理提质增效,潍城区强化预算
四川经济网德阳讯(杨冬梅记者闫新宇)近日,广汉市商务经合局协同广汉
从2023年7月27日23时起,厦门辖区所有高速公路主线及入口封闭,禁止一
个人使用住房公积金贷款购买二星级以上绿色建筑、装配式建筑或者超低能
摘要:2023年07月28日箭牌家居(001322)换手率大于8%,主力资金净流入
在西藏74个县区中,山南市琼结县是唯一入选第一批国家乡村振兴示范县创
从龙泉山俯瞰成都市夜景(6月24日摄)。夜色中的成都流光溢彩,美轮美
临汾市公安局党委副书记、常务副局长张少华接受纪律审查和监察调查,主
为深入推动移风易俗,树立勤俭节约、文明健康的生活方式,倡树文明乡风
他被林心如坑了7年,低谷时赵丽颖拉了一把,如今片约不断,杨幂,林心如,
人民日报北京7月27日电(记者王浩、何佳译)近日,国家水土保持监测站
图片来源:国家统计局网站7月28日讯(记者李春晖)国家统计局27日公布
界面新闻记者|胡振明近日,京城股份(600860 SH)披露公告称,终止公司
金融界7月28日消息受日本央行相关消息影响,今日日韩股市低开,日经225
Copyright 2015-2022 亚太酒业网 版权所有 备案号:沪ICP备2020036824号-11 联系邮箱: 562 66 29@qq.com